DIE KRISTALLSTRUKTUR DES TRIS(MONOHAPTO)CYCLOPENTA-DIENYLANTIMON(III), (${}^{1}h$ -C₅H₅)₃Sb

MATTHIAS BIRKHAHN, PETER KROMMES, WERNER MASSA und JÖRG LORBERTH*

Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, D-3550 Marburg/Lahn (B.R.D.)

(Eingegangen den 2. Oktober 1980)

Summary

 $(C_{s}H_{s})_{3}$ Sb was synthesized by treatment of Sb(NMe₂)₃ with excess monomeric cyclopentadiene in quantitative yield. The compound crystallizes in the space group $P2_{1}/c$ with Z = 4; $d_{c} 1.606$ g cm⁻³; a 1036.5(15) pm; b 872.1(10 pm; c 1563.6(21) pm; $\beta 109.47(12)^{\circ}$. At 223 K a set of 1849 unique reflections was obtained, 1574 with $F > 2\sigma(F)$ have been used for refining the structure; full-matrix treatment with individual anisotropic temperature factors led to a reliability index $R_{w} = 0.025$. The molecular structure unequivocally shows the existence of σ -bonded (¹h-monohapto)cyclopentadienyl rings with approximate tetrahedral angles between the "best planes" of the five-membered rings and the Sb—C bond directions. The space-demanding non-bonding electron pair at the Sb atom influences the molecular packing: channels are formed along the b-axis of the elementary cell.

Zusammenfassung

 $(C_5H_5)_3$ Sb wurde aus der Reaktion von Sb(NMe₂)₃ mit überschüssigem monomeren Cyclopentadien in quantitativer Ausbeute erhalten. Die Verbindung kristallisiert in der Raumgruppe $P2_1/c$ mit Z = 4; d_c 1.606 g cm⁻³; a 1036.5(15) pm; b 872.1(10) pm; c 1563.6(21) pm; β 109.47(12)°. Bei 223 K wurden 1849 unabhängige Reflexe erhalten, davon 1574 mit $F > 2\sigma(F)$ für die Verfeinerung verwandt; Full-Matrix-Verfeinerung mit individuellen anisotropen Temperaturfaktoren führte zu einem Zuverlässigkeitsfaktor von $R_w = 0.025$.

Die Molekülstruktur zeigt eindeutig σ -gebundene (¹*h*-monohapto)-Cyclopentadienylringe mit angenäherten Tetraederwinkeln zwischen den "besten Fünfringebenen" und den Sb—C-Bindungsrichtungen. Das platzbeanspruchende freie Elektronenpaar am Sb-Atom macht sich in der Packung der Moleküle bemerkbar: es werden kanalartige Hohlräume entlang der *b*-Achse der Elementarzelle gebildet. Fischer et al. [1] berichteten 1960 erstmals über Versuche zur Darstellung von Cyclopentadienylverbindungen des Wismuts und Antimons: $(C_5H_5)_3$ Sb und $(C_5H_5)_4$ Sb₂ wurden als rote Oele bzw. rote Kristalle isoliert. Aus dem gleichen Arbeitskreis wurde 1970 [2] zusammen mit einer modifizierten Synthese die vollständige Charakterisierung des gelb gefärbten Tris(cyclopentadienyl)antimons mitgeteilt, dessen Molekülgestalt durch einen raschen Übergang von π - zu σ -gebundenen C₅H₅-Ringen, verbunden mit einem Symmetriewechsel von D_{3h} nach C_{3v}, beschrieben werden kann; ein (C₅H₅)₄Sb₂ wurde nicht mehr erwähnt [2].

Über eine einfache und quantitativ ablaufende Reaktion von Sb(NMe₂)₃ [3] mit monomerem Cyclopentadien in Ether bei -80° C erhielten wir analysenreine, gelbgefärbte Kristalle von (C₅H₅)₃Sb, Fp. 53[°]C.

Sb(NMe₂)₃ $\xrightarrow{C_5H_6 (Ueberschuss)}_{-80^{\circ}C/Et_2O absol.}$ (C₅H₅)₃Sb + 3 HNMe₂

In unseren Arbeiten über die Dimethylmetallcyclopentadienyle der Elemente Arsen, Antimon und Wismut sowie über $Me_2InC_5H_5$ [4,5] waren wir zu einem Bindungsvorschlag mit ausschliesslich σ -gebundenem C_5H_5 -Liganden gekommen; die Strukturaufklärung eines Tris(cyclopentadienyl) metalls aus der Reihe der VB-Elemente war daher von vorrangigem Interesse. Ein aus etherischer Lösung gewonnener Einkristall wurde deshalb bei -50° C einer Röntgenstrukturanalyse unterzogen.

Strukturbestimmung

Nachdem durch Filmaufnahmen bei Raumtemperatur die Raumgruppe $P2_1/c$ und die Elementarzelle bestimmt wurden, erfolgte zur Verringerung des Einflusses der thermischen Schwingung die Intensitätsmessung bei -50° C. Die wichtigsten experimentellen Daten sind in Tab. 1 zusammengestellt.

Die Lösung der Struktur erfolgte aus einer dreidimensionalen Pattersonsynthese, die die Antimon-Position ergab. In nachfolgenden gewichteten Differenzfouriersynthesen und Verfeinerungsläufen erschienen stufenweise alle C-Atome. Die Verfeinerung der Grundstruktur mit isotropen Temperaturfaktoren führt zu einem R-Wert von 0.70 ($R = \sum ||F_0| - |F_c|| / \sum |F_0|$) bzw. R_g von 0.073 $(R_g = [\Sigma w (|F_0| - |F_c|)^2 / \Sigma w F_0^2]^{1/2})$ mit w = 1. Nach Einführung anisotroper Temperaturfaktoren (R = 0.041, $R_r = 0.048$) zeichneten sich in einer erneut gerechneten Differenzfouriersynthese die H-Atome ab; sie konnten mit individuellen isotropen Temperaturfaktoren verfeinert werden. Die abschliessende Full-Matrix-Verfeinerung aller Parameter mit Wichtung der F_0 -Werte nach k/σ^2 $(\sigma = \text{Standardabweichung der } F_0$ -Werte aus der Zählstatistik, k wurde zu 1.443 verfeinert) konvergierte sehr gut, so dass am Ende die maximale Parameterverschiebung beim 0.002-fachen der Standardabweichung lag, und ergab $R_w = 0.025$ $(R_{\rm w} = \Sigma \sqrt{w} ||F_0| - |F_{\rm c}|| / \sqrt{w} \Sigma |F_0|)$, bzw. R = 0.031, $R_{\rm g} = 0.029$. (Die resultierenden Lageparameter und Temperaturfaktoren sind in Tab. 2 und 3 zusammengefasst, F_0/F_c -Listen werden auf Verlangen zugesandt).

Diskussion der Struktur

Wie aus Fig. 1 und 2 ersichtlich liegt das Sb-Atom an der Spitze einer trigonalen Pyramide, deren Basis von den C(1)-Atomen der drei Cp-Ringe gebildet

Fig. 1. Moleküldarstellung von Tris(¹ h-cyclopentadienyl)antimon; Atome als 50% Wahrscheinlichkeits-Ellipsoide.

Fig. 2. Stereoprojektion der vierfachen Elementarzelle von $({}^{1}h$ -C₅H₅)₃Sb; Darstellung der Hohlräume entlang der b-Achse.

TABELLE 1 DATEN ZUR RÖNTGENSTRUKTURANALYSE VON $(C_5H_5)_3Sb$

Kristalldaten bei --50° C Raumgruppe: $P2_1/c$ Z = 4 a 1036.5(15) pm, b 872.1(10) pm, c 1563.6(21) pm β 109.47(12)°, d_c 1.606 g cm⁻³ Kristallformat: irregulär, ca. 0.4 × 0.25 × 0.2 mm

Intensitätsmessung 4-Kreis-Diffraktometer CAD 4 (Enraf—Nonius) Mo- K_{α} -Strahlung, graphit-monochromatisiert Messbereich: $2^{\circ} < \vartheta < 23^{\circ}$: $\pm h$, k, l: ω -Scan-Modus Scan-Winkel: $(1 + 0.35 \text{ tg } \vartheta)^{\circ}$ und jeweils 25% vor und hinter dem Reflex zur Untergrundmessung Messzeit: variabel, maximal 150 sec: Messtemperatur: 223 K Gesamtzahl gemessener Reflexe: 1930 Unabhängige: 1849, davon 1574 > 20(F_0) für Verfeinerung verwandt

Auswertung

Rechenanlage: TR 440 (Rechenzentrum der Universität Marburg) Programme: CADLP [6], STRUX [7], SHELX [8], ORTEP [9] Atomformfaktoren für Neutralatome [10] Berücksichtigung der anomalen Dispersion [11] Keine Absorptionskorrektur (μ 18.8 cm⁻¹)

wird. Die Sb—C-Abstände (Tab. 4) liegen im Mittel bei 224.9 pm, die Bindungswinkel am Sb-Atom betragen im Mittel 96.4° ähnlich wie z.B. in Tri-*p*-tolylantimon [12], wo 97.3° angegeben werden. Weitere intermolekulare bindende Wechselwirkungen mit dem Sb-Atom sind bei einem kürzesten Kontaktabstand von 409.2 pm (Sb—C(34')) nicht in Betracht zu ziehen.

Überraschenderweise ist nun der Cp-Ring 1 von der Pyramidengrundfläche aus gesehen nach unten sowie auch leicht seitlich abgeklappt während die beiden anderen Ringe nach oben weisen (Fig. 1). Die Winkel zwischen den Sb-C-Bindungsrichtungen und den für die drei Ringe berechneten "besten" Fünfringebenen betragen 118.7° (Ring 1), 110.4 (Ring 2) und 103.5° (Ring 3), im Mittel 110.9°. Diese gut bei einem idealen Tetraederwinkel liegenden Werte wie auch die Tatsache, dass der nächstkürzeste Sb-C-Abstand (zu C(35)) bereits 286.4 pm beträgt, zeigt, dass bei allen drei Ringen eindeutig monohapto- σ -Bindungen zum Antimonatom vorliegen. Der Grund für die verschiedenartige geometrische Anordnung der Cp-Ringe dürfte in Packungseffekten liegen, die sich wegen der zu erwartenden geringen Einschränkungen der freien Drehbarkeit um die Sb-C-Bindungsachsen stark auswirken können. In der Stereozeichnung (Fig. 2) wird deutlich, dass bei der Packung der Moleküle auch der Platzbedarf des freien Elektronenpaars am Sb-Atom eine wesentliche Rolle spielen muss: die Pyramidenspitzen weisen alle in Richtung kanalartiger Hohlräume, die parallel zur b-Achse der Elementarzelle verlaufen.

Die Geometrie der drei Cp-Ringe selbst ist untereinander sehr ähnlich (Tab. 4): im Einklang mit der Annahme reiner σ -Bindung zum Antimonatom heben sich die beiden Doppelbindungsabstände C(2)—C(3) und C(4)—C(5) (Mittel: 134.8 pm) deutlich ab von den verkürzten Einfachbindungen C(3)—C(4) (Mittel: 143.8 pm) und C(1)—C(2) bzw. C(1)—C(5) (Mittel: 146.8 pm). Sehr ähnliche

LAGEPARAMETER UND TEMPERATURPAKTOREN VON (C4H4)3Sb (ohne H-Atome) TABELLE 2

	۰.
	¥
	10
	24
	-
	20
	:
	Ţ
	т N
	*_
	13
	4
	5
	ຽ
	4
	Ŷ
	÷
	Ę.
	9
	Ч,
	Пâ
	÷
	5
	E
	ef
	Ð
	P
	SI.
	ц
	Ä
	÷
	B
	耳
	ati
5	20
ē.	ġ
	GL
5	Ē
	le
5	р
2	ľ,
2	, d
2	5
2	62
è.	Р
2	8
5	zt
2	E
	占
1	ą
-	u a
2	Ŧ,
	he
	Ę
3	بت م
5	4
1	E u
5	ъ
1	Ĩ
1	÷
	ve
	ā
2	4
	ä
>	р
	ta
1	Ś
	lie
	ŭ
	er
	Ē
	E
5	3
Ē.	Ч.
1	11

In Klamme	rn die Standardat	oweichungen in E	inheiten der letzte	en Dezimale. Die	Temperaturfakte	oren sind definie	rt nach $exp[-2\pi^2$	(U ₁₁ h ² a ^{*2} +	2U ₁₂ hka*b*)]
Atom	x/a	y/b	z/c	U ₁₁	U22	U_{33}	U23	U ₁₃	v_{12}
Sb	0.21147(3)	0.05209(3)	0.10300(2)	0.0347(2)	0.0347(2)	0.0399(2)	0.0011(2)	0.0056(1)	0,0012(2)
C(11)	0.0991(5)	0.1266(6)	0.1978(4)	0.040(3)	0.037(3)	0.060(3)	-0.002(3)	0.013(2)	-0,002(2)
C(12)	0.1059(5)	0.2948(6)	0.2016(5)	0.041(3)	0.046(3)	0.076(4)	0.000(3)	0.024(3)	0,008(3)
C(13)	0.1846(6)	0.3370(8)	0.2859(5)	0.046(3)	0.060(4)	0.096(5)	-0.033(4)	0.035(3)	-0,009(3)
C(14)	0.2256(6)	0.2017(9)	0.3416(4)	0.043(3)	0.103(6)	0.054(4)	-0.020(4)	0.013(3)	0,006(3)
C(1 6)	0.1740(5)	0.0782(7)	0.2914(4)	0.055(3)	0.064(4)	0.053(3)	0.006(3)	0.026(3)	0,009(3)
C(21)	0.4083(5)	0.1657(6)	0.1832(3)	0.039(3)	0.036(2)	0.045(3)	0.002(2)	0.011(2)	-0,005(2)
C(22)	0.4048(5)	0.3141(6)	0.1388(4)	0.042(3)	0.040(3)	0.063(3)	-0.003(3)	0.010(3)	-0,005(2)
C(23)	0.4898(6)	0.3072(7)	0.0896(4)	0.058(3)	0.054(4)	0.059(3)	0.019(3)	0.009(3)	-0,011(3)
C(24)	0.5561(5)	0.1610(7)	0.1009(4)	0.046(3)	0.062(4)	0.059(3)	0.002(3)	0,021(3)	-0,002(3)
C(25)	0.5114(5)	0.0773(6)	0.1583(3)	0.035(2)	0.037(3)	0.055(3)	0.005(2)	0.008(2)	0'000(\$)
C(31)	0.2619(5)	-0.1862(6)	0.1586(4)	0.043(3)	0.036(3)	0.043(3)	0.006(2)	0'010(3)	0,003(2)
C(32)	0.3083(6)	-0.2573(6)	0.0897(4)	0.048(3)	0.042(3)	0.067(3)	0.005(3)	0.018(3)	0,006(3)
C(33)	0.2032(6)	-0.3370(6)	0.0326(5)	0.074(4)	0.028(3)	0.069(4)	-0.010(3)	0.018(3)	0,004(3)
C(34)	0.0873(6)	-0.3272(6)	0.0634(4)	0.049(3)	0.035(3)	0.079(4)	-0.009(3)	0.010(3)	-0,007(3)
C(35)	0,1212(5)	0,2432(6)	0.1401(4)	0.050(3)	0.029(3)	0.064(3)	0.002(3)	0.020(3)	0,002(2)

Atom	x/a	у/b	z/c	U	
H(11)	0.112(6)	0.072(7)	0.170(4)	0.063(16)	
H(12)	0.071(6)	0.356(8)	0.147(4)	0.069(18)	
H(13)	0.201(7)	0.435(8)	0.305(5)	0.080(20)	
H(14)	0.275(7)	0.197(8)	0.401(5)	0.088(23)	
H(15)	0.180(6)	-0.035(7)	J.307(4)	0.064(16)	
H(21)	0.407(5)	0.170(6)	0.246(3)	0.043(13)	
H(22)	0.345(5)	0.400(6)	0.144(3)	0.036(12)	
H(23)	0.498(6)	0.388(7)	0.056(4)	0.058(16)	
H(24)	0.617(6)	0.124(7)	0.074(4)	0.068(18)	
H(25)	0.536(5)	-0.016(7)	0.176(3)	0.041(14)	
H(31)	0.320(6)	-0.173(7)	0.215(4)	0.060(17)	
H(32)	0.389(6)	-0.242(7)	0.082(3)	0.050(15)	
H(33)	0.204(6)	0.390(7)	-0.009(4)	0.056(18)	
H(34)	0.003(6)	0.373(7)	0.033(4)	0.072(18)	
H(35)	0.063(5)	-0.219(5)	0.177(3)	0.037(13)	

LAGEPARAMETER UND ISOTROPE TEMPERATURFAKTOREN (definiert nach $exp[-2\pi^2 Ud^{*2}]$) FÜR DIE H-ATOME IN (C₅H₅)₃Sb

Bindungslängen wurden in dem ebenfalls σ -gebundenen Cp-Ring von Cp₃MoNO [13] gefunden (entsprechende Abstände: 134.7 pm, 144.2 pm und 146.8 pm).

Alle drei Cp-Ringe in SbCp₃ sind nicht ganz eben: die C(1)-Atome liegen jeweils ca. 6 pm über der "besten" Ebene der Atome C(2)—C(5) (Tab. 5), so dass von einer schwachen "Briefumschlag"-Form gesprochen werden kann; die Diederwinkel ("Briefumschlagwinkel") betragen 3.6, 3.9 und 4.7°.

TABELLE 4

BINDUNGSLÄNGEN (in pm) UND -WINKEL (in Grad) VON $(C_5H_5)_3$ Sb (Standardabweichungen in Einheiten der letzten Dezimale)

Sb-C(11)	226.4(5)	C(11)—Sb—C(21)	94.5(2)	
Sb-C(21)	223.8(5)	C(11)-Sb-C(31)	96.7(2)	
Sb-C(31)	224.6(5)	C(21)-Sb-C(31)	98.1(2)	
Mittelwert	224.9	Mittelwert	96. 4	
C(11)C(12)	146.9(8)	C(12)C(11)C(15)	104.1(5)	
C(12)-C(13)	135.1(9)	C(11)-C(12)-C(13)	108.4(6)	
C(13)C(14)	144.4(10)	C(12)-C(13)-C(14)	109.1(6)	
C(14)-C(15)	133.4(9)	C(13)-C(14)-C(15)	109.0(5)	
C(15)-C(11)	147.1(8)	C(14)-C(15)-C(11)	109.2(6)	
C(21)-C(22)	146.4(7)	C(22)—C(21)—C(25)	104.1(4)	
C(22)-C(23)	135.0(8)	C(21)C(22)C(23)	108.2(5)	
C(23)-C(24)	143.1(8)	C(22)—C(23)—C(24)	110.3(5)	
C(24)-C(25)	135.3(8)	C(23)-C(24)-C(25)	107.9(5)	
C(25)-C(21)	147.1(7)	C(24)-C(25)-C(21)	109.4(5)	
C(31)—C(32)	145.7(8)	C(32)-C(31)-C(35)	105.1(5)	
C(S2)C(33)	134.9(8)	C(31)-C(32)-C(33)	108.4(5)	
C(33)—C(34)	143.8(9)	C(32)-C(33)-C(34)	109.2(6)	
C(34)C(35)	134.8(8)	C(33)C(34)C(35)	109.3(5)	
C(35)C(31)	147.5(7)	C(34)-C(35)-C(31)	107.8(5)	

TABELLE 3

TABELLE 5

Atom	Ring 1	Ring 2	Ring 3
C(2)	0.24	0.05	0.25
C(3)	0.39	0.09	0.4
C(4)	0.39	0.09	0.4
C(5)	0.25	-0.06	-0.25
C(1)	6.2	5.6	7.3
Diederwinkel	3.9°	3.6°	4.7°

ABWEICHUNGEN (in pm) VON DEN "BESTEN EBENEN"DURCH DIE C-ATOME 2-5 IN DEN DREI FÜNFRINGEN VON $(C_5H_5)_3$ Sb UND DIEDERWINKEL ("Briefumschlagwinkel") ZWISCHEN DIESEN UND DEN DURCH DIE C-ATOME 1, 2 UND 5 DEFINIERTEN EBENEN

Tris(¹h-cyclopentadienyl)antimon ist unseres Wissens das einzige röntgenographisch gesicherte Beispiel für reine Metall—Kohlenstoff- σ -bindungen in Derivaten des Typs Cp₃M. In Cp₃Sc [14] liegen vierfachkoordinierte Metallatome mit je zwei ⁵h-C₅H₅-Ringen und zwei doppelt σ -gebundenen Cp-Ringen vor; weitere Beispiele für gemischte ¹h- und ⁵h-cyclopentadienyle findet man in Cp₂Fe-(CO)₂ [15] sowie in den Tetra(cyclopentadienyl)metallderivaten von Titan [16], Zirkon [17] und Hafnium [18].

Literatur

- 1 E.O. Fischer und S. Schreiner, Chem. Ber., 93 (1960) 1417.
- 2 B. Deubzer, M. Elian, E.O. Fischer und H.P. Fritz, Chem. Ber., 103 (1970) 799.
- 3 K. Mödritzer, Inorg. Chem., 3 (1964) 609.
- 4 P. Krommes und J. Lorberth, J. Organometal. Chem., 88 (1975) 329.
- 5 P. Krommes und J. Lorberth, J. Organometal. Chem., 92 (1975) 181.
- 6 U. Müller, R. Schmidt und W. Massa, CADLP, Programm zur LP-Korrektur von Diffraktometerdaten, Marburg, 1979.
- 7 R. Schmidt und W. Massa, STRUX, Programmsystem zur Verarbeitung von Röntgendaten, Marburg 1979.
- 8 G.M. Sheldrick, SHELX, A Program for Crystal Structure Determination, Cambridge 1976.
- 9 C.K. Johnson, ORTEP: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, ORNL 1965.
- 10 D.T. Cromer und J.B. Mann, Acta Crystallogr., A, 24 (1968) 321.
- 11 D.T. Cromer und D. Libermann, J. Chem. Phys., 53 (1970) 1891.
- 12 A.N. Sobolev, I.P. Romm, V.K. Belsky und E.N. Guryanova, J. Organometal. Chem., 179 (1979) 153.
- 13 J.L. Calderon, F.A. Cotton und P. Legzdins, J. Amer. Chem. Soc., 91 (1969) 2528.
- 14 J.L. Atwood und K.D. Smith, J. Amer. Chem. Soc., 95 (1973) 1488.
- 15 M.J. Bennett, Jr., F.A. Cotton, A. Davison, J.W. Faller, S.J. Lippard und S.M. Morehouse, J. Amer. Chem. Soc., 88 (1966) 4371.
- 16 J.L. Calderon, F.A. Cotton, B.G. DeBoer und J. Takats, J. Amer. Chem. Soc., 93 (1971) 3592.
- 17 R.D. Rogers, R. Vann Bynum und J.L. Atwood, J. Amer. Chem. Soc., 100 (1978) 5238.
- 18 V.I. Kulishov, E.M. Brainina, N.G. Bokiy und Yu.T. Struckov, J. Organometal. Chem., 36 (1972) 333.